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ABSTRACT 

Elliptic differential equations are derived for the generation of struc-
tured meshes and difference equations for the generation of smooth hybrid 
meshes from metric identity. A parabolic procedure is used to march the 
solution of the difference equations simultaneously for both types of 
meshes away from surface patches meshed by quads or triangles. An aero-
dynamic application for the ONERA M6 wing demonstrates how the
blocking at the wing tip is simplified by using both types of meshes in-
stead of a purely structured mesh. On the other hand it is shown that a 
large number of points can be saved compared to a purely hybrid grid.
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1. INTRODUCTION 

As long as the variations of the field variables to be resolved by the nu-
merical solution to a set of differential equations are of the same order of 
magnitude in all directions the use of unstructured meshes is appropriate
and furthermore avoids the manual labor of subdividing the field into 
blocks usually needed for structured meshes. On the other hand an ade-
quate resolution of very thin layers with large normal gradients requires a 
layered structure of the mesh. 
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Such meshes may be generated by marching away from a fixed mesh
face, say the body surface in case of a boundary layer, or away from a 
floating mesh face in case of a wake. When the mesh on the initial face is 
unstructured, the resulting three-dimensional mesh extruded from it con-
sists of prisms of triangular cross-sections and is called hybrid. A struc-
tured mesh on the initial face, of course, leads to a fully structured three-
dimensional mesh. 

Structured meshes are easily clustered differently in all grid line direc-
tions. Since they need far less points for directional clustering than un-
structured meshes, they add efficiency to the numerical solution procedure
of the differential equations. On the other hand their generation suffers 
from the amount of work to be invested to achieve the blocking for com-
plex geometries. To ease the situation we combine both kinds of surface 
meshes starting the three-dimensional marching generation of mixed 
meshes simultaneously from neighboring patches with structured and un-
structured surface meshes. 

Since our objective is to generate smooth meshes we will start from a set 
of elliptic equations. In a previous paper [1] beginning with the metric 
identity in its differential conservative form the well known Poisson equa-
tions for structured meshes were derived including a precise analytical 
definition of all 9 control functions. To solve these differential equations 
numerically they were parabolized with respect to the marching direction 
and subsequently discretized [2]. 

For unstructured meshes there exists no globally underlying computa-
tional space. Therefore, starting from the same basic principle means that 
we will begin with the metric identity in its discrete form to directly derive 
from it the set of algebraic equations to be solved numerically. 

In the 80s marching procedures were used with the primary intention to 
speed up the generation process of three-dimensional structured meshes.
We have added a flexible control of grid line spacing and orthogonality
with no need for any initial algebraic or reference mesh [2]. With respect 
to the generation of hybrid meshes the majority of the publications are
based on pure algebraic procedures. An exception is the paper of David 
Thompson [3], which makes use of a local two-dimensional expansion of 
the elliptic mesh generation equation originating from Patrick Knupp’s 
work [4] on smoothing triangular surface meshes. 
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2. DIFFERENTIAL FORM OF METRIC IDENTITY 

Dirichlet conditions on the boundary 
specify the solution of an elliptic equa-
tion. Figure 1 shows a structured master 
cell with 26 known mesh points on the 
cell boundary and just one unknown inte-
rior point. The position vector r in physi-
cal space x, y, z is a function of the com-
putational space variables ξ, η, ζ. The
normal onto a grid face ξ = const is given
by the cross product of the vectors along
the η- and ζ-lines: rη x rζ. The metric 

identity in its differential form simply states that the sum over the face 
normal vectors in +ξ and -ξ direction together with the sum over the re-
maining face normal vectors in η- and ζ-directions must vanish: 

(( )) (( )) (( )) 0.r r r r r rηη ζζ ζζ ξξ ξξ ηηξξ ηη ζζ
×× ×× ××++ ++ == (1) 

Defining normal face vectors as 

1 2 1, ,S r r S r r S r rηη ζζ ζζ ξξ ξξ ηη== ×× == ×× == ×× (2) 

we decompose the contravariant vectors Si into the covariant base vectors
rξ, rη, rζ as shown below for S1
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and expand the terms in brackets in order to cast the conservative form of
the identity into a non-conservative equation for the position vector r:
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Terms in square brackets 
represent the so-called control 
functions. V is the cell volume. 
Only when we prescribe these 
control functions the metric 
identity becomes a mesh gen-
erating equation. The most 
simple prescription, setting all 
control functions to zero, 
yields the face weighted 
Laplace equation in computa-
tional space corresponding to 
the linear Laplace equation for 
the mesh faces ξ, η, ζ in 
physical space, when we inter-
change dependent and inde-
pendent variables. 

{{ }}2
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3. PARABOLIC STRUCTURED MESH GENERATION

In order to parabolize equation (4) we choose ζ as the independent vari-
able in marching direction and split the line-wise second derivative of r
with respect to ζ into a difference of first order up- and downwind deriva-
tives:

d ur r rζζζζ ζζ ζζ== −− . (6)

Treating rζ
d as a source term yet to be specified and approximating the 

second line-wise derivatives by central differences we obtain

(( )){{
(( )) }} {{ }}

2
1, , 1, ,, , 1

2 2 2 2
3 , , 1 1 2 32 2 2

i j k i j ki j k

d
i j k

r rr S

S r r S S Sζζ

−− ++

−−

++== ⋅⋅ ++

++ ⋅⋅ ++++ ++ ++

(7)

On each face k = const this equation will be solved iteratively by some
relaxation scheme. The source term rζ

d is specified in terms of an outward 
spacing times a unit vector. Near body surfaces, e.g. across boundary lay-
ers, the preferred outward direction is usually the solution dependent local 
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Fig. 2: Discrete triangular prism
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normal to faces k = const. While marching in strictly local normal direc-
tion out of concave surfaces will inevitably lead to a crossing of grid lines, 
it is the ellipticity of our equation in the lateral directions, which usually 
provides sufficient dissipation to prevent the grid from folding. Such in-
herent dissipation scales with S1

2/S3
2 and S2

2/S3
2 in i- and j-direction, re-

spectively, which - under the assumption of complete orthogonality - is
just the square of the scaling factors proposed by Steger and Chan [5].  

For further details, especially for the controls in the lateral and marching 
directions, we refer the reader to [2].

4. METRIC IDENTITY FOR HYBRID MESH GENERATION 

Since there is no globally underlying computational space for unstruc-
tured meshes, we start from the metric identity in its discrete form. As
shown in figure 2 let us consider locally a closed collection of n triangles
around a common point on three levels m-1, m, m+1.

As in the structured case we assume all points on the cell’s bounding
faces to be known and thus encounter a local elliptic problem for just one 
unknown central point. Defining normal vectors to the prism’s faces, O in 
lateral, P in circumferential and Q in marching direction, respectively, the 
metric identity simply states again that the sum over all outward pointing 
face vectors must vanish: 

, , 1 , 1

1 1 0
4 4n m n m n m

O Q Q
++ −−

==++ −− .
(8) 

The face vectors O, P, Q are defined via cross products of the line vec-
tors Δr, Δs, Δt

, ,O s t P t r Q r s== ΔΔ ×× ΔΔ == ΔΔ ×× ΔΔ == ΔΔ ×× ΔΔ (9) 

where Δr is from central point to the midpoint between neighbored cor-
ners, Δs points anti-clockwise in circumferential direction and Δt is in the 
outward body normal direction. 

Proceeding as in the structured case we decompose the face normal vec-
tors into the line vector directions using the box product 

V r s t== ΔΔ ΔΔ ΔΔ (10)

as shown below for the face normal O
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and rewrite the metric identity in terms of line vectors with coefficients 
consisting of scalar products of face vectors: 
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Compared with the expanded differential form of the identity for struc-
tured meshes (4), which split into the Laplacian terms and the control func-
tions, the corresponding decomposition of the discrete form of the identity
(12) yields nothing similar. We are still faced with the problem to isolate 
the Laplacian smoothing part from the pure identity. 

The problem area is, of course, confined to the unstructured mesh in the 
body conforming surfaces. Decomposing the discrete identity for planar 
surfaces 

0n
n

O == (13)

into line vectors Δr and Δs yields
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Expressing also the coefficients in terms of line vectors 
2 2, , n nn n n nt const O s O P r sΔΔ == == ΔΔ == −−ΔΔ ΔΔ (15)

we obtain in two dimensions 
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In order to define the coefficients 
indicated by overbars as suited av-
erages such that equation (16) will 
represent the discretized Laplace 
equation, we compare them first to 
the discretized form of the Laplace 
equation for quadrangles. Since that
equation does not contain a variable
volume, we assume Vn to be con-
stant.  

From structured meshes we know
that all coefficients of the Laplace equation are evaluated from cell bound-
ary points only, i.e. the central point is never involved. Thus the averaged 
line vectors for forming the coefficients are readily defined from opposing 
boundary points: 
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1 1,
2 2n n n nnn r r r rs r++ −− ++−− −−ΔΔ == ΔΔ ==

(17)

with n being cyclic according to figure 3.
With the so defined coefficients equation (16) becomes identical to the 

difference approximation of the Laplace equation in computational space. 
Since the above relations hold for quads only, we still have to generalize
the averaging of line vectors in order to formulate the coefficients. For that 
purpose we take into account the angle dependence in idealized multi-
cornered cells as shown in figure 4 for a hexagon.

The averaged values of Δsn are defined by the formulae, 
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i.e. we measure the true Δsn, multiply them with the cosines of the angles
of an ideally regular cell and add the terms up to obtain the average of the 
coefficient forming line vector nsΔΔ . Analogous formulae for nrΔΔ  only 
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Fig. 3: planar quadrangle



116 Jochen Wild, Peter Niederdrenk, Thomas Gerhold

contain the midpoints of the cell’s 
edges marked as an open circle in 
figure 4. The unknown central
point does not enter. 

Having introduced the aver-
aged coefficients into the identity
we compared our solutions with 
those of Winslow’s discretized
Laplace equation [6] for a num-
ber of example meshes consisting 
of quads or hexagons and found 

both solutions in full agreement. Since the only structured meshes made up
of triangles lead to quadrangles and hexagons, our averaging procedure is 
not proved but only believed to hold for any collection of triangles forming 
an N-cornered cell. 

In an earlier paper about „Winslow smoothing on two-dimensional un-
structured meshes“ Patrick Knupp [4] introduced pointwise a locally uni-
form computational space, expanded the derivatives about each mesh node 
in a Taylor series and solved the resulting coupled system. His procedure 
seems to require essentially more computational work.

Applying the averaged line vectors in three dimensions to formulate av-
eraged face vectors according to definitions (9) the latter show some re-
markable properties: 

1. the face vectors 
n

Q  in body normal direction and 

2. in consequence, also the local cell volumes nV  on the central level m
both become constant for all n just as in the Laplace equation for 
structured meshes,

nn
Q Q const V Q t const== == == ⋅⋅ ΔΔ == (19)

3. also, sums over mixed scalar products of averaged face normal vec-
tors vanish

0n nn nO P O Q QP== == == . (20)

Expanding the differences in body normal direction about the central 
level m in equation (12) 
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we discard the difference of the coefficients between upper and lower level 
in accordance with the structured Laplace equation. Thus, all averaged co-
efficients are to be evaluated on the central level m only.

With this expansion and accounting for the above mentioned properties 
of the coefficients we solve equation (12) for the unknown central point r0
on level m:
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where Δrn,m is defined as the midpoint between two adjacent corner points 
according to the sketch in figure 5 

(( )), 1,, 0,, ,with 1 2 n m n mn m mn m n m rc rcr rm r rm ++++ΔΔ == −− == . (23)

On the right hand side of equation (22) the coefficients in the first line re-
sult from the decomposition of the face vectors On,m, while the coefficients 
in the three following lines result from the decomposition of the face vec-
tors Qn,m.

To solve equation (22) within a marching procedure we need at least 
three layers. Providing Dirichlet boundary conditions on the first layer ini-
tially from a known surface mesh and on the second and third layer from
an algebraic forecast we iterate the solution to convergence on the inter-
mediate layer. After each such iteration the algebraic forecast on the outer 
third layer will be updated. Once the solu-
tion is known on the intermediate layer, it 
becomes the boundary condition of the first 
layer for the next marching step and so 
forth.

The algebraic forecast needs a prescrip-
tion of the spacing and the local marching 
direction. The latter follows from an angle 
weighted superposition of normal vectors to 
those faces around a central point, which
limit the domain of visibility. Details are 
described in the appendix.
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Fig. 5: Midpoint vector rmn
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5. A GENERIC TEST EXAMPLE FOR HYBRID MESH 
GENERATION

The test example consists of a
planar delta wing with extremely
sharp edges and a wedge on top of
it. Despite its geometric simplicity 
the generic configuration poses a
severe test case, since we expect 
pure Laplacian smoothing to pull 
the mesh over the sharp edges and 
corners and also pure algebraic 
marching out of concavities to 
generate overlapped meshes. 

The surface mesh is coarse (all together 1515 points, 3026 triangles), 
rather regular but not symmetric. Points have not been clustered towards
the edges and corners - as would be preferable to better resolve these areas 
in fluid flow calculations - in order not to mask the cell stretching around 
the sharp edges expected to appear in the body conforming mesh surfaces 
to be generated. 

Having marched the solution over 20 layers off the body surface with 20
iterations per layer the two figures below show cuts through the hybrid 
mesh in the symmetry plane y = 0 and in a section at x = 0.8.

Fig. 6: Test configuration
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As is seen from figure 7 marching out off concave corner regions does
not cause any problems, even not ahead of the sharp wedge starting from a 
point of mixed strong convex and concave curvature, where the front edge 
of the wedge meets the wing in the plane y = 0.

But here the curvature of the cut lines 
changes sign when approaching the
outer hull (figure 7 left) and the result-
ing surface mesh (figure 8) becomes 
unacceptable. Around those three points 
of mixed strong convex/concave curva-
ture, where the wedge meets the wing, 
the cells are badly stretched in the direc-
tion of the convexity and are com-
pressed in the direction of the concav-
ity. 

Looking for a remedy to suppress 
these excessively stretched cells we re-
turn to the planar case and consider just a single convex cell. For given
corner points the central point (see figure 9) follows from the solution to 
the equation 

(( ))2 0nn nn n
n

s rs r s ==ΔΔ ΔΔΔΔ ΔΔ −− ΔΔ (24)

y = 0 x = 0.8

Fig. 7: Mesh cuts at y = 0 (left) and x = 0.8 (right)

Fig. 8: Outer surface mesh 
(pure Laplace)
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as a superposition of forces Δr acting in the radial directions and forces Δs
acting parallel to the cell’s edges weighted by our Laplacian coefficients.
The dark black arrows show the resulting force per edge acting on the cen-
tral point. In figures 9 to 11 the magnitude of the arrow-heads is drawn 
proportional to the magnitude of the forces and the central point is marked 
as a circle filled black. 

Switching to a cell with large differences in edge lengths putting one 
point to the left and five boundary points to the right hand side (see fig. 10) 
the solution to our Laplace equation being identical to Winslow’s solution 
pulls over the right end of the convex hexagon. This is somewhat surpris-
ing, since 
the extremum principle 
should hold for Laplace’s 
equation. Obviously the ex-
tremum principle being de-
fined for the continuous 
differential case does not
hold for the discrete and 
distorted cell. 

The Laplacian solution 
seems to deteriorate due to
the large forces parallel to 
the edges. Reducing these 
forces, when the cell becomes strongly stretched, i.e. when the angle be-
tween Δr and Δs becomes small, by a correction formula in an engineering
fashion

(( ))(( ))21 0.25 cos ,reds s r sΔΔ == ΔΔ ⋅⋅ −− ⋅⋅ ΔΔ ΔΔ (25)

Fig. 10: Folded hexagon, central point 
pulled over right end of cell

Fig. 9: Forces acting on the cen-
tral point of a planar cell

Fig. 11: Laplacian cell with reduced Δs-forces



MARCHING GENERATION       121

drives the central point from its position outside the hexagon (fig. 11, open 
circle) back into the convex polygon (fig. 11, black filled circle) prevent-
ing the cell from folding. 

Applying the simple correction formula to the three-dimensional exam-
ple the extreme stretching disappear (fig. 12) and the distribution of cells 
becomes rather smooth, as is also to be seen from front and rear. 

While the body is symmetric, its surface triangulation is not. Therefore
the full mesh has been generated. Slight deviations from symmetry are ob-
servable in the outer surface mesh. 

Sure, there is still some larger stretching around the sharp edges of the 
wing, which could have been mitigated significantly by clustering points
towards the edges on the body surface mesh to better resolve these regions. 
This would lead to cells being stretched in the direction of the edges on the 
body surface counteracting the present stretching of the cells on the outer 
hull perpendicular to the edges. 

6. GENERATION OF MIXED MESHES 

The shortcoming of purely hybrid grids is the low anisotropy of surface 
triangles resulting in a large number of surface grid points, which is ag-
glomerated throughout the prismatic layers for the boundary layer resolu-
tion. Especially for the high aspect ratio wings the low anisotropy of the 
unstructured surface mesh leads to an unnecessary high resolution in the 
span-wise direction. Recalling the experience with the application of struc-
tured grids, it is known that the aspect ratios of surface quadrilaterals can 
be orders of magnitude higher, additionally resulting in well aligned body 
conforming meshes. On the other hand an increasing complexity of the
configuration to be meshed limits the application of pure structured grids
mainly because of intricate grid topology. 
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In the mixed mesh approach we use simple block structured boundary
layer grids with highly stretched hexahedral cells wherever possible. Topo-
logically difficult regions limiting the application of pure block structured 
grids are meshed by adjoining layers of prisms of triangular cross-section.
The outer flow field is meshed using tetrahedral elements. The connection
between the tetrahedral elements in the outer inviscid flow domain and the 
hexahedral elements in the boundary layer region is accomplished by egg-
carton like pyramids. Since the structured grid approach offers direct con-
trol on point distributions by the bottom up approach, a smooth transition 
from the structured into the unstructured part can be achieved. It has al-
ready been shown that applying this grid technique can speed up Navier-
Stokes flow computations by up to 90% without loosing solution accuracy,
mainly due to the saving of points [7].

The grid generator used is the formerly purely structured DLR grid gen-
erator MegaCads [8], which allows for parametric construction of block
structured grids. Besides basic CAD features like surface construction,
projection and intersection, it is capable of constructing smooth grids by
applying elliptic techniques as well as parabolic advancing front meshing 
for wall orthogonal boundary layer grids [2]. The whole grid generation 
process is stored in a process description file and can be re-run for modi-
fied geometries, as long as the CAD-topology is retained. Due to the para-
metric capabilities it is possible to guarantee grid quality in terms of 
smoothness, resolution and grid line angles even for larger geometrical 
changes. To account for the necessity to include the grid generator in an

Fig. 12: Laplacian mesh with reduced Δs-forces
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optimization loop, MegaCads can be run in a non-interactive mode, repeat-
ing the grid generation process for the actual geometry. 

The hybrid mesh generation procedure described in detail above in this
paper has been implemented in MegaCads. 

For the generation of the unstructured grid part the 3D triangulation 
software NETGEN of Schöberl [9] was incorporated into the framework of 
MegaCads as a Black-Box tool. The NETGEN software offers constrained 
Delaunay volume triangulation of a given triangulated surface mesh, 
which in the following application is the outer hull of the pyramidal inter-
face layer and the outer prisms’ faces wherever applied. The pyramidal 
elements connecting the structured with the unstructured mesh part are ex-
truded from the hexahedral elements based on edge lengths in order to 
achieve a smooth transition of the control volumes for the reduction of 
numerical errors and/or instabilities. 

7. APPLICATION

The ONERA M6 wing, measured by Schmidt and Valpin [11], is used 
for demonstration of the semi-structured grid approach using the described 
parabolic marching algorithms. The blunt trailing edges are closed, as this
is commonly applied for CFD for this case. The rounded wing tip is re-
placed by a sharp cut at the end of the wing. This is done to demonstrate 
the prismatic capabilities. In purely structured grid generation this kind of 
wingtip would either lead to degenerated cells at the extension of the trail-
ing edge or to an arbitrary closing of the wing tip within the range of one 
cell. Applying semi-structured grid generation the wing tip is meshed with 
triangular prisms (figure 13). 
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For comparison purposes a second purely hybrid mesh has been gener-
ated using the CENTAUR mesh generator [10]. Figure 14 shows the sur-
face meshes for both mesh generation strategies. Both meshes have 32 cell
layers normal to the wall to resolve the boundary layer and the vertical
resolution is similar between both types of meshes. The mixed grid has 
about 215.000 points and 6.000 surface elements on the wing, while the 
purely hybrid grid has 1.400.000 points with about 80.000 surface ele-
ments, since for the unstructured surface mesh generation only a maximum
anisotropic aspect ratio of 2 is allowed. For the semi-structured grid the 
maximum aspect ratio of the surface quads is around 170.

Figure 15 shows a comparison of the calculated surface pressure coeffi-
cient at two different spanwise locations for both meshes. It is observed
that the solution quality is similar and the shock at the outer section is re-
solved better by the mixed mesh approach. 

Fig. 13: Parabolic prism grid around the ONERA M6 wing tip
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8. CONCLUSIONS

In analogy to the differential equations of structured grids the face-
weighted Laplace equation in discrete form has been derived from metric 
identity. Hybrid meshes are generated embedding the solution of the dif-
ference equation in a marching procedure with sufficient algebraic control 
of spacing in the structured direction. The ellipticity of the equation in the 
unstructured body conforming directions provides enough dissipation to 
prevent the mesh from folding when marching out of concave body surface 
areas. A simple coefficient modification avoids the formation of highly 
stretched distorted cells prone to overlap. 

The mixed mesh strategy has been applied for the ONERA M6 wing
and has been compared to a purely hybrid mesh. It has been shown that the
smooth mixed mesh approach is able to capture the flow physics by using 
only about 20% of the points of a standard hybrid grid. 

Fig. 14: Surface meshes for hybrid (left) and mixed meshes (right) around the
ONERA M6 wing 

Fig. 15: Comparison of pressure distributions of the M6 wing at two different
spanwise locations for a hybrid grid and a mixed mesh
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APPENDIX: LOCAL MARCHING DIRECTION 

The definition of the local marching direction for hybrid meshes is read-
ily explained by an example. With respect to the configuration shown in 
figure 6 let us consider the point, in which the left rear edge of the wegde 
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formed by faces 3 and 4 meets 
the trailing edge of the wing 
formed by faces 1 and 2 (see 
sketch below).  

To define the polyhedron of
visibility for a point we only use 
different unit normal face
vectors, i.e. we discard
multiples of identical unit nor-
mals. Edge vectors ej,k are formed along the intersection lines of all combi-
nations of two faces, for instance e3,4 between faces 3 and 4. The sense of
direction of the edge vector follows from the sense of the most aligned 
face normal, e.g. e3,4 from n1 or e1,3 from n4.

The polyhedron of visibility is given by only those edge vectors, which 
can see all faces, i.e. for which ej,k ni  is not negative. In the example the 
edge vector e3,4 is excluded, since it cannot see face 2. The remaining edge 
vectors e1,4, e2,4 and e1,2 form the polyhedron of visibility. 

The marching direction follows from a weighted superposition of nor-
mals to those faces forming the polyhedron of visibility 

i iN w n== .

In our example n3 does not contribute to the polyhedron of visibility, so 
it does not appear in the above formula. The  weights are taken propor-
tional to the angle between the appertaining edge vectors, for instance n4 is
weighted by the angle between e1,4 and e2,4.




